#!!! CHECK: knots <- quantile(min,max) OR quantile(0,max)???
net.structure <- function(data=data,
metareg=F,class.effect=F,
ref.lab='placebo',refclass.lab='placebo',
knot_probs=c(0.25,0.50,0.75)
){
# 1. data: data.frame() that have the following
# studyid
# r: number of events
# n: sample size
# dose: the dose level
# drug: drug names
# cov (if metareg is TRUE)
# class (if class.effect is TRUE)
# 2. metareg: T/F to preform dose-effect NMR
# 3. class: T/F to run dose-effect class model
# 4. ref.lab: the referenced drug, default is placebo
# 5. refclass.lab: the referenced class, default is placebo
# load
require('dplyr')
require('rms')
#** initial arguments
ns <- length(unique(data$studyid)) # number of studies
ndrugs <- length(unique(data$drug)) # number of drugs
na <- as.numeric(table(data$studyid)) # number of arms per study
max.na <- max(na) # maximum number of arms
data$studyID <- as.numeric(as.factor(data$studyid)) # add numeric odered study id
study_id <- unique(data$studyID) # a vector of unique studyID
data$drug_index <- as.numeric(factor(data$drug)) # drug numeric index
data$drug <- tolower(data$drug) # translate drug names to lower case
# the numeric index of the reference
if(is.null(ref.lab)&is.null(refclass.lab)){
ref.lab<- refclass.lab <-'placebo'
}else{
ref.lab<-ref.lab
refclass.lab <- refclass.lab
}
ref.index <- unique(data$drug_index[data$drug==ref.lab])
refclass.index <- unique(data$classF[data$class==refclass.lab])
#** doses to RCS transformation
# dataset without placebo to obtain RCS transformation for each non-placebo drug
data_no_placebo <- data[data$drug!=ref.lab,]
data_no_placebo$drug <- factor(data_no_placebo$drug)
if(class.effect){ # for hramonized doses
# FIND RCS
max.dose <- max(data$dose,na.rm = T)
min.dose <- min(data$dose,na.rm = T)
knots <- quantile(min.dose:max.dose,probs = knot_probs)
rcsdose <- rcspline.eval(data$dose,knots = knots,inclx = TRUE)
# ADD RCS
data$dose2 <- rcsdose[,2]
# FIND RCS for absolute predictions
new.dose <- 1:max.dose
f.new.dose <- rcspline.eval(new.dose,knots = knots,inclx = TRUE)[,2]
nd.new <- round(max.dose)
}else{ # for unhramonized doses
# FIND rcs
rcsdose_drug <- data_no_placebo %>%
group_by(drug) %>%
group_map(~dose_to_rcs(.x$dose)) # the list order as the order of levels(data_no_placebo)
rcsdose <- do.call(rbind,rcsdose_drug)
rownames(rcsdose) <- rep(levels(data_no_placebo$drug),
times=as.numeric(table(data_no_placebo$drug)))
# ADD rcsdose: dose2
data$dose2 <- data$dose
for (i in 1:(ndrugs-1)){
data$dose2[data$drug==levels(data_no_placebo$drug)[i]] <- rcsdose[rownames(rcsdose)==levels(data_no_placebo$drug)[i],2]
}
# FIND RCS for absolute predictions
max.dose <- round(max(data$dose,na.rm = T))
new.dose <- f.new.dose <- matrix(NA,ndrugs,max.dose)
nd.new <- rep(0,ndrugs)
for (i in unique(data_no_placebo$drug_index)){ # loop through non-placebo drugs
max.dose <- round(max(data[data$drug_index==i,]$dose,na.rm = T))
min.dose <- round(min(data[data$drug_index==i,]$dose,na.rm = T))
new.dose[i,1:max.dose] <- 1:max.dose
knots <- quantile(min.dose:max.dose,probs = knot_probs)
f.new.dose[i,1:max.dose] <- rcspline.eval(new.dose[i,1:max.dose],knots = knots,inclx = TRUE)[,2]
nd.new[i] <- length(new.dose[i,1:max.dose])
}
}
# ORDER the doses on each study: start from zero
data_withRCS <-data%>%
group_by(studyID)%>%
arrange(dose,.by_group=TRUE)
#** Column to matrix with ns in rows and na in columns(max.na is specified, the additionals are given NA)
rmat <- col_to_mat(data_withRCS,data_withRCS$r)
nmat <- col_to_mat(data_withRCS,data_withRCS$n)
dosemat <- col_to_mat(data_withRCS,data_withRCS$dose)
dose2mat <- col_to_mat(data_withRCS,data_withRCS$dose2)
tmat <- col_to_mat(data_withRCS,data_withRCS$drug_index)
#** For inconsistency model: indices of direct comparisons
comp <- direct.comp.index(data_withRCS)
t1 <- comp[,'t1']
t2 <- comp[,'t2']
ncomp <- nrow(comp)
#** RETURN: list to jags models
jagsdata <- list(ns=ns, na=na,ndrugs=ndrugs,
r=rmat, n=nmat,dose1=dosemat,t=tmat,dose2=dose2mat,
ref.index=ref.index,
rr=rmat,nn=nmat,new.dose=new.dose,f.new.dose=f.new.dose,nd.new=nd.new,
t1=t1,t2=t2,ncomp=ncomp
)
#** Add to jagsdata for metareg or class effect parts
if(metareg){
if(class.effect){
classmat <-col_to_mat(data_withRCS,data_withRCS$classF)
nc <- length(unique(classF))
covmat <-col_to_mat(data_withRCS,data_withRCS$cov)
add <- list(class.effect=classmat, refclass.index=refclass.index, nc=nc,
cov=colMeans(t(covmat),na.rm=T)
)
jagsdata <- c(jagsdata,add)
}else{
covmat <-col_to_mat(data_withRCS,data_withRCS$cov)
add <- list(cov=colMeans(t(covmat),na.rm=T)
)
jagsdata <- c(jagsdata,add)
}
}else{
if(class.effect){
classmat <-col_to_mat(data_withRCS,data_withRCS$classF)
nc <- length(unique(data_withRCS$classF))
add <- list(class=classmat, refclass.index=refclass.index, nc=nc)
jagsdata <- c(jagsdata,add)
}else{
jagsdata
}
}
return(jagsdata)
}
#!!! think about it and ask Georgia: the quantile should be computed from min OR 0 to max dose
# functions to be used in net.structure
# 1. take the drug-dose and find its RCS transformation at
dose_to_rcs <- function(dose.per.drug,knot_probs=c(0.25,0.50,0.75)){
require('rms')
max.dose <- max(dose.per.drug)
min.dose <- min(dose.per.drug)
knots <- quantile(0:max.dose,probs = knot_probs)
rcs.dose.per.drug <- rcspline.eval(dose.per.drug,knots = knots,inclx = TRUE)
return(rcs.dose.per.drug)
}
# 2. convert the data column to matrix ( row is study and column is arm (dose-level) )
col_to_mat <- function(data,var){
ns <-length(unique(data$studyid))
na <- as.numeric(table(data$studyid)) # number of arms per study
max.na <- max(na)
data$studyID <- as.numeric(as.factor(data$studyid)) # transform studyid to ordered numeric values
study_id <- unique(data$studyID)
varmat <- matrix(NA,ns,max.na)
for (i in 1:ns) {
varmat[i,1:as.numeric(table(data$studyID)[i])] <- var[data$studyID == study_id[i]]
}
return(varmat)
}
# 3. find the indices of the direct head-to-head comparisons
direct.comp.index <- function(data)
{
require(dplyr)
data <- dplyr::arrange(data, data$studyid, data$dose)
t1 <- vector()
t2 <- vector()
for (i in seq_along(unique(data[["studyid"]]))) {
subset <- subset(data, studyid==unique(data[["studyid"]])[i])
for (k in 2:nrow(subset)) {
t1 <- append(t1, subset[["drug"]][1])
t2 <- append(t2, subset[["drug"]][k])
if (is.na(subset[["drug"]][k])) {
stop()
}
}
}
comparisons <- data.frame(t1 = t1, t2 = t2)
comparisons <- comparisons %>% dplyr::group_by(t1, t2) %>%
dplyr::mutate(nr = dplyr::n())
comparisons <- unique(comparisons)
comparisons <- dplyr::arrange(comparisons, t1, t2)
row_name = comparisons$row_name
comparisons %<>% select(-row_name) %>% as.matrix
rownames(comparisons) = row_name
return(comparisons)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.